Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.

نویسندگان

  • Bradley E Treeby
  • B T Cox
چکیده

The efficient simulation of wave propagation through lossy media in which the absorption follows a frequency power law has many important applications in biomedical ultrasonics. Previous wave equations which use time-domain fractional operators require the storage of the complete pressure field at previous time steps (such operators are convolution based). This makes them unsuitable for many three-dimensional problems of interest. Here, a wave equation that utilizes two lossy derivative operators based on the fractional Laplacian is derived. These operators account separately for the required power law absorption and dispersion and can be efficiently incorporated into Fourier based pseudospectral and k-space methods without the increase in memory required by their time-domain fractional counterparts. A framework for encoding the developed wave equation using three coupled first-order constitutive equations is discussed, and the model is demonstrated through several one-, two-, and three-dimensional simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling power law absorption and dispersion in viscoelastic solids using a split-field and the fractional Laplacian.

The absorption of compressional and shear waves in many viscoelastic solids has been experimentally shown to follow a frequency power law. It is now well established that this type of loss behavior can be modeled using fractional derivatives. However, previous fractional constitutive equations for viscoelastic media are based on temporal fractional derivatives. These operators are non-local in ...

متن کامل

Lévy stable distribution and [0,2] power law dependence of acoustic absorption on frequency

The absorption of acoustic wave propagation in a broad variety of lossy media is characterized by an empirical power law function of frequency, y ω α0 . It has long been noted that exponent y ranges from 0 to 2 for diverse media. Recently, the present author developed a fractional Laplacian wave equation to accurately model the power law dissipation, which can be further reduced to the fraction...

متن کامل

Stable Distribution and [0;2] Power Law Dependence of Acoustic Absorption on Frequency in Various Lossy Media

Absorption of acoustic wave propagation in a large variety of lossy media is characterized by an empirical power law function of frequency, 0j!j y . It has long been noted that the exponent y ranges from 0 to 2 for diverse media. Recently, the present author [J. Acoust. Soc. Am. 115 (2004) 1424] developed a fractional Laplacian wave equation to accurately model the power law dissipation, which ...

متن کامل

Galerkin Finite Element Approximations for Stochastic Space-Time Fractional Wave Equations

Abstract. The traditional wave equation models wave propagation in an ideal conducting medium. For characterizing the wave propagation in inhomogeneous media with frequency dependent power-law attenuation, the spacetime fractional wave equation appears; further incorporating the additive white Gaussian noise coming from many natural sources leads to the stochastic spacetime fractional wave equa...

متن کامل

Parallel implementation of underwater acoustic wave propagation using beamtracing method on graphical processing unit

The mathematical modeling of the acoustic wave propagation in seawater is the basis for realizing goals such as, underwater communication, seabed mapping, advanced fishing, oil and gas exploration, marine meteorology, positioning and explore the unknown targets within the water. However, due to the existence of various physical phenomena in the water environment and the various conditions gover...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 127 5  شماره 

صفحات  -

تاریخ انتشار 2010